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Lecture 33

Oscillators, VCOs, and 

Oscillator/VCO-Derived Filters
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Only two of these circuits are useful directly as bias generators!
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Review from last lecture:



Transconductance Linearization Strategies
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Review from last lecture:



Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage
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Programmable First-Order Low-Pass Filter

Review from last lecture:



Question:

What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT=? OCT s

XIN XOUT T s

XOUT
Oscillator

i.e.  Can an oscillator be 

viewed as a filter with no 

input?



What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT
Oscillator

Will focus on modifying oscillator structures to form high frequency narrow-

band  filters

Claim:   Narrow band filters are dependent primarily on the poles close to 

the imaginary axis and affected little by poles that are farther away 

Goal:  Obtain very high frequency filter structures

XOUT=? OCT s



What is the relationship, if any, between a filter and 

an oscillator or VCO?

XOUT
Oscillator

• When power is applied to an oscillator, it initially behaves as a small-

signal linear network

• When operating linearly, the oscillator has poles (but no zeros)

• Poles are ideally on the imaginary axis or appear as cc pairs in the RHP

• There is a wealth of literature on the design of oscillators

• Oscillators often are designed to operate at very high frequencies

• If cc poles of a filter are moved to RHP is will become an oscillator

• Can oscillators be modified to become filters?

XOUT=? OCT s



Consider a cascaded integrator loop comprised of 

n integrators
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Oscillator Background:

XOUT=? OCT s

This structure is often used to build oscillators

(assume an odd number of inverting integrators)



Consider the poles of   n n
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Poles are the n roots of -1 scaled by I0
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Roots of -1:

Roots are uniformly spaced on a unit circle 
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Consider the poles of   n n
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Some useful theorems

Theorem:   A rational fraction                           with simple poles can be expressed

in partial fraction form as          

where                                            for 1 ≤ j ≤ n
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Theorem:   The impulse response of a rational fraction T(s) with simple poles can 

be expressed as                             where the  numbers Ai are the coefficients

in the partial fraction expansion of T(s)



Theorem:  If  pi is a simple complex pole of the rational fraction T(s), then the 

partial fraction expansion terms in the impulse response corresponding to pi and pi* 

can be expressed as *
i i

*
i i

A A

s-p s-p


Theorem:  If pi = αi+jβi is a simple pole with non-zero imaginary part of the rational 

fraction T(s), then the impulse response terms corresponding to the poles pi and pi* 

in the partial fraction expansion can be expressed as

where  θi is the angle of the complex quantity Ai

 i
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i i iA e cos β t+θ

Observe r(t) term corresponding to any complex pole pair is real !



Theorem:  If all poles of an n-th order rational fraction T(s) are simple and have a 

non-zero Imaginary part, then the impulse response can be expressed as 

where  θi ,Ai,αi, and βi are as defined before
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Theorem:  If an odd-order rational fraction has one pole on the negative real axis 

at α0 and n simple poles that have a non-zero Imaginary part, then the impulse 

response can be expressed as 

where  θi ,Ai,αi, and βi are as defined before
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Observe r(t) is real for both even and odd n !
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Poles of   n n
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Consider the following 3-pole situation
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α t
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0.5 -0.866025404

0.5 0.866025404

-1 3.67545E-16

α=0.5 I0

β=0.866 I0

Oscillatory output at startup with any small 

impulse input:

Starts at ω=0.866I0 and will slow down as nonlinearities limit amplitude

for cc pole pair:

α=I0cos(60o)

β=I0sin(60o)

θ=60o



Poles of   n n
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Consider moving all poles to left by Δα

α=0.5 I0 - Δα
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So, to get a high ω0, want β as large as possible

Consider the following 3-pole situation



Define the location of the filter pole to be

F Fα +jβ

Consider now the filter by adding a loss of αL to the integrator

It follows that

Fβ β F Lα =α-α

Will now determine αL and I0 needed to get a desired pole Q and ω0  by moving all 

poles so that right-most pole pair is dominant high-frequency pole pair  of filter 

The relationship between the filter parameters

is well known
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The values of α and β are dependent upon I0 but

the angle θ is only dependent upon the number of

integrators in the oscillator or VCO
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Will a two-stage structure give the highest frequency of operation?
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• Even though the two-stage structure may not oscillate, can work as a filter!

• Need  odd number of inversions in integrators

• Can add phase lead if necessary
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What will happen with a circuit that has two pole-pairs in the RHP?

The impulse response will have two decaying exponential terms and two

growing exponential terms
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Oscillator Background:

General form of response for odd number of poles: 
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What will happen with a circuit that has two pole-pairs in the RHP?

Consider the growing exponential terms and normalize to  I0=1 
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At t=145 (after only 10 periods of the lower frequency signal)
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The lower frequency oscillation will completely dominate !



What will happen with a circuit that has two pole-pairs in the RHP?

Can only see the lower frequency component !
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Thanks to Chen for these plots



What will happen with a circuit that has two pole-pairs in the RHP?

Consider the growing exponential terms and normalize to  I0=1 

α1=0.2225

α2=0.9009

After even only  two periods of the lower frequency waveform, it 

completely dominates !
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Thanks to Chen for these plots



How do we guarantee that we have a net coefficient of +1 in D(s)?
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Must have an odd number of inversions in the loop !

If n is odd, all stages can be inverting and identical !
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How do we guarantee that we have a net coefficient of +1 in D(s)?
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If fully differential or fully balanced, must have an odd number of 

crossings of outputs

Applicable for both even and odd order loops 
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• Add loss to delay stages

• Multiple Input Locations Often Possible

• Natural Input is Input to delay stage 
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Inputs to Oscillator-Derived Filters:
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• Add loss to delay stages

• Often Just Salvage Stages (drop feedback loop)

• Natural input is input to delay stage

Most applicable to designing 2nd-order high frequency narrow band filters



A lossy integrator stage 
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A fully-differential voltage-controlled integrator stage 

Will need CMFB circuit
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A fully-differential voltage-controlled integrator stage with loss 
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Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Recall:

Substituting for I0 and αL we obtain:

Vin

Vout

XC
M1

DDV

M2
IB

(1)

(2)

(3)

(4)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Expressing gm1 and gm2 in terms of design parameters:

If we assume IB=0, equating drain currents obtain:

Thus the previous two expressions can be rewritten as :
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(9)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement

0 m1 Xg /CI 
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Taking the ratio of these two equations we obtain:

Observe that the pole Q is determined by the dimensions of the lossy device !
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Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Still must obtain W1/ L1, VEB1, and CX from either of these equations

Although it appears that there might be 3 degrees of freedom left and only

one constraint (one of these equations), if these integrators are connected in a 

loop, the operating point (Q-point) will be the same for all stages and will be that value 

where Vout=Vin.  So, this adds a second constraint.

Setting Vout=Vin , and assuming VT1=VT2,  we obtain from KVL 

DD EB1 EB2 TV =V +V +2V

(8)

(10)

(11)

But VEB1 and VEB2 are also related in (7)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Still must obtain W1/ L1, VEB1, and CX from either of these equations

DD EB1 EB2 TV =V +V +2V
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Substituting (10) into (12) and then into (8) we obtain
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Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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
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There is still one degree of freedom remaining. Can either pick W1/L1 and solve for CX

or pick CX and solve for W1/L1. 

Explicit expression for W1/L1 not available

Tradeoffs between CX and W1/L1 will often be made

Since VOUTQ=VT+VEB1, it may be preferred to pick VEB1, then solve (12) for W1/L1 and 

then solve (13) for CX

Adding IB will provide one additional degree of freedom and will relax the relationship

between VOUTQ and W1/L1 since  (7) will be modified
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Stay Safe and Stay Healthy !



End of Lecture 33


