EE 508

Lecture 33

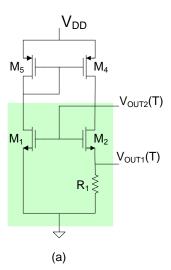
Oscillators, VCOs, and Oscillator/VCO-Derived Filters

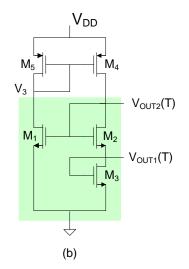
Review from last lecture:

Only two of these circuits are useful directly as bias generators!

Inverse Widlar

Not stable equilibrium point!





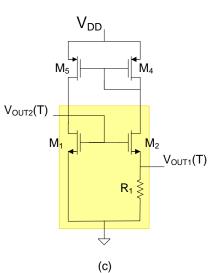
Inverse Widlar

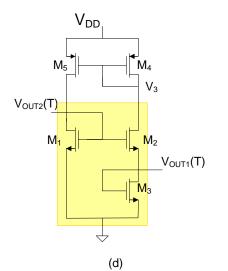
$$V_{01} = V_{Tn} \left(\frac{1 - \sqrt{\frac{W_2 L_1}{M_{IW} W_1 L_2}}}{1 + \sqrt{\frac{W_2 L_3}{W_3 L_2}} - \sqrt{\frac{W_2 L_1}{M_{IW} W_1 L_2}}} \right)$$

$$V_{02} = V_{Tn} \left(\frac{1 + \sqrt{\frac{W_2 L_3}{W_3 L_2}} - 2\sqrt{\frac{W_2 L_1}{M_{IW} W_1 L_2}}}{1 + \sqrt{\frac{W_2 L_3}{W_3 L_2}} - \sqrt{\frac{W_2 L_1}{M_{IW} W_1 L_2}}} \right)$$

$$\begin{split} V_{01} &= \left(\frac{\theta_1}{2} \pm \sqrt{\frac{\theta_1 V_{Tn}}{2}} + \left(\frac{\theta_1}{2}\right)^2\right) \left(1 - \sqrt{\frac{W_1 L_2}{M_W W_2 L_1}}\right) \\ V_{02} &= V_{Tn} + \frac{\theta_1}{2} \pm \sqrt{\frac{\theta_1 V_{Tn}}{2} + \left(\frac{\theta_1}{2}\right)^2} \end{split}$$

$$I_{D1} = M_W I_{D2}$$
$$\theta_1 = \frac{M_W 2L_1}{R\mu_n C_{OX} W_1}$$



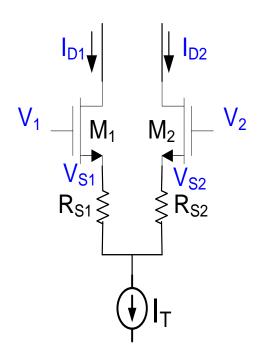


Widlar

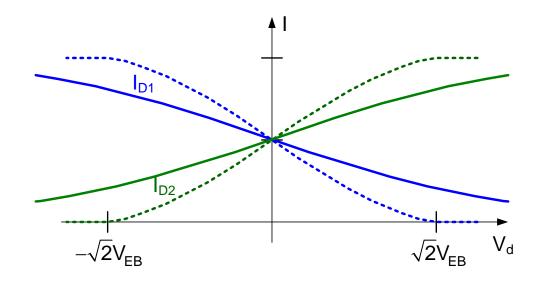
Not stable equilibrium point!

Review from last lecture:

Transconductance Linearization Strategies



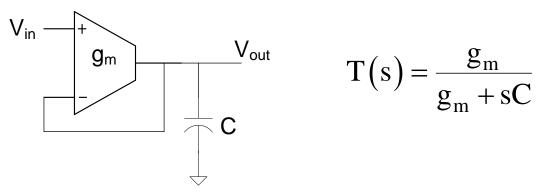
$$\sqrt{\frac{1}{\beta}} \left(\sqrt{I_T - I_{D1}} - \sqrt{I_{D1}} \right) + R_S \left(I_T - 2I_{D1} \right) = V_d$$



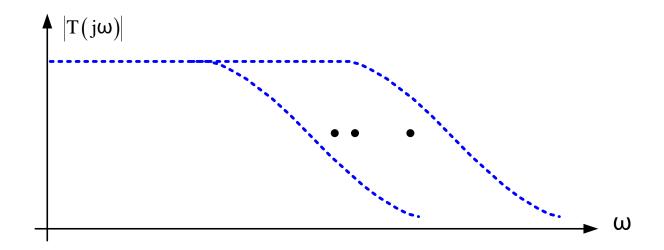
Review from last lecture:

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

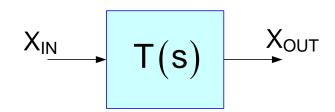


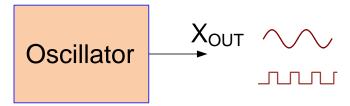
Programmable First-Order Low-Pass Filter



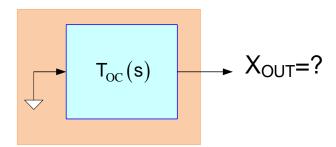
Question:

What is the relationship, if any, between a filter and an oscillator or VCO?

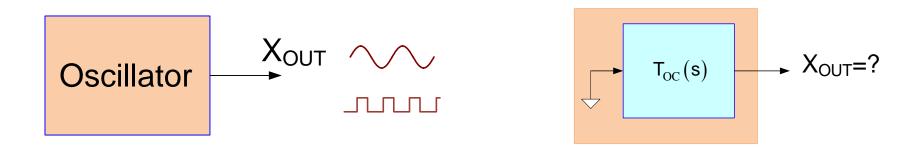




i.e. Can an oscillator be viewed as a filter with no input?



What is the relationship, if any, between a filter and an oscillator or VCO?

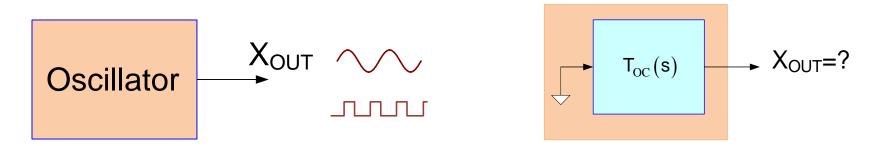


Will focus on modifying oscillator structures to form high frequency narrowband filters

Claim: Narrow band filters are dependent primarily on the poles close to the imaginary axis and affected little by poles that are farther away

Goal: Obtain very high frequency filter structures

What is the relationship, if any, between a filter and an oscillator or VCO?

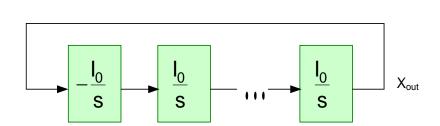


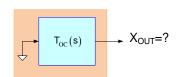
- When power is applied to an oscillator, it initially behaves as a smallsignal linear network
- When operating linearly, the oscillator has poles (but no zeros)
- Poles are ideally on the imaginary axis or appear as cc pairs in the RHP
- There is a wealth of literature on the design of oscillators
- Oscillators often are designed to operate at very high frequencies
- If cc poles of a filter are moved to RHP is will become an oscillator
- Can oscillators be modified to become filters?

Oscillator Background:

Consider a cascaded integrator loop comprised of n integrators

This structure is often used to build oscillators





(assume an odd number of inverting integrators)

$$X_{OUT} = -\left(\frac{I_0}{s}\right)^n X_{OUT}$$
$$X_{OUT} \left(s^n + I_0^n\right) = 0$$
$$D(s) = s^n + I_0^n$$

Consider the poles of

$$D(s) = s^n + I_0^n$$

$$s^n + I_0^n = 0$$

$$s^n = -I_0^n$$

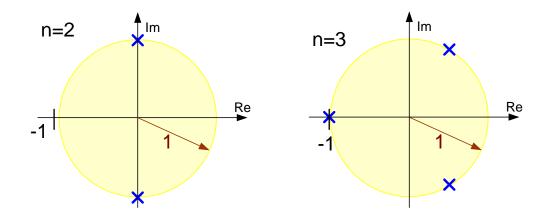
$$\mathbf{S} = \left[-I_0^{\mathsf{n}} \right]^{\frac{1}{n}}$$

$$\mathbf{S} = \begin{bmatrix} -1 \end{bmatrix}^{\frac{1}{n}} \begin{bmatrix} I_0^n \end{bmatrix}^{\frac{1}{n}}$$

$$\mathbf{S} = I_0 \left[-1 \right]^{\frac{1}{n}}$$

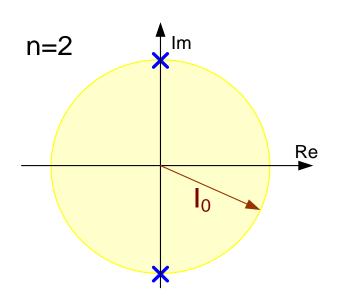
Poles are the n roots of -1 scaled by I₀

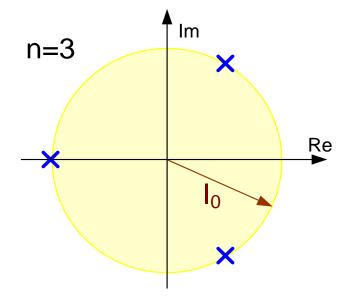
Roots of -1:

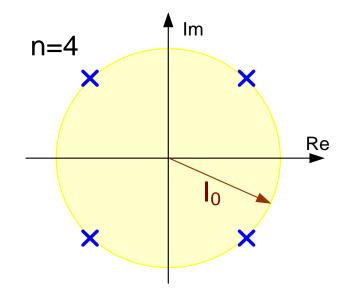


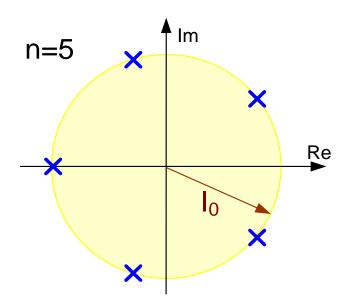
Roots are uniformly spaced on a unit circle

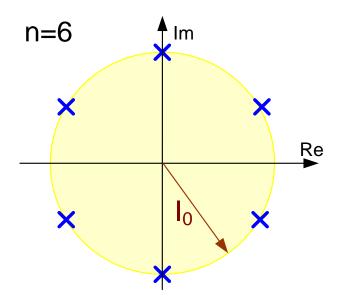
Consider the poles of $D(s) = s^n + I_0^n$

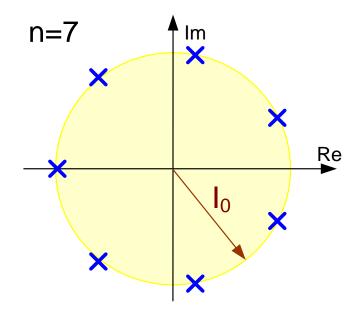


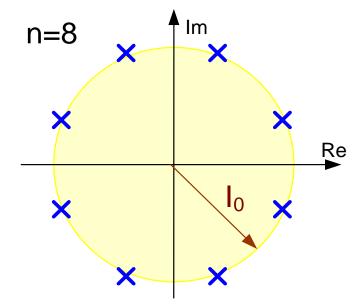












Some useful theorems

Theorem: A rational fraction
$$T(s) = \frac{N(s)}{\prod_{i=1}^{n} (s-p_i)}$$
 with simple poles can be expressed

in partial fraction form as
$$T(s) = \sum_{i=1}^{n} \frac{A_i}{s - p_i}$$

where
$$A_i = (s-p_i)T(s)|_{s=p_i}$$
 for $1 \le j \le n$

Theorem: The impulse response of a rational fraction T(s) with simple poles can be expressed as $r(t) = \sum_{i=1}^{n} A_i e^{p_i t}$ where the numbers A_i are the coefficients

in the partial fraction expansion of T(s)

Theorem: If p_i is a simple complex pole of the rational fraction T(s), then the partial fraction expansion terms in the impulse response corresponding to p_i and p_i^* can be expressed as $\frac{A_i}{s - p_i} + \frac{A_i^*}{s - p_i^*}$

Theorem: If $p_i = \alpha_i + j\beta_i$ is a simple pole with non-zero imaginary part of the rational fraction T(s), then the impulse response terms corresponding to the poles p_i and p_i in the partial fraction expansion can be expressed as

$$|A_i|e^{\alpha_i t}\cos(\beta_i t + \theta_i)$$

where θ_i is the angle of the complex quantity A_i

Observe r(t) term corresponding to any complex pole pair is real!

Theorem: If all poles of an n-th order rational fraction T(s) are simple and have a non-zero Imaginary part, then the impulse response can be expressed as

$$\sum_{i=1}^{n/2} |A_i| e^{\alpha_i t} \cos(\beta_i t + \theta_i)$$

where θ_i , $A_{i,}\alpha_i$, and β_i are as defined before

Theorem: If an odd-order rational fraction has one pole on the negative real axis at α_0 and n simple poles that have a non-zero Imaginary part, then the impulse response can be expressed as

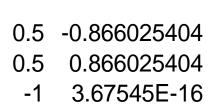
$$A_0 e^{\alpha_0 t} + \sum_{i=1}^{n/2} |A_i| e^{\alpha_i t} \cos(\beta_i t + \theta_i)$$

where θ_i , A_i , α_i , and β_i are as defined before

Observe r(t) is real for both even and odd n!

Consider the following 3-pole situation

Poles of
$$D(s) = s^n + I_0^n$$



 $n=3 \qquad \begin{array}{c} h \\ \text{Im} \\ \alpha = I_0 \cos(60^\circ) \\ \beta = I_0 \sin(60^\circ) \end{array}$

0

for cc pole pair:

$$\alpha = 0.5 I_0$$

$$\beta = 0.866 I_0$$

Oscillatory output at startup with any small impulse input:

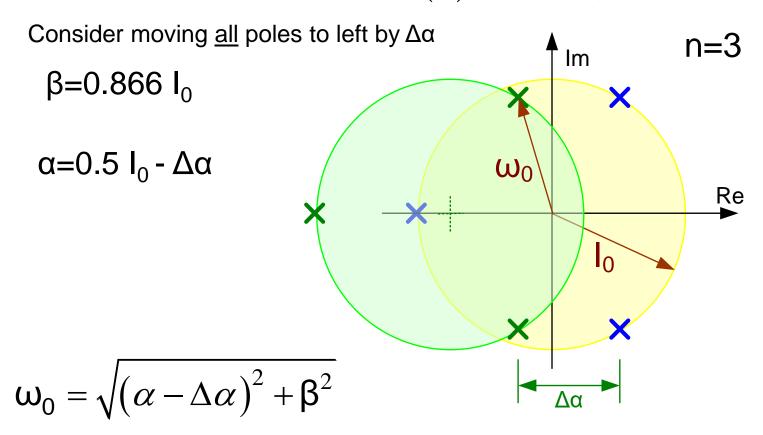
$$|A_i|e^{\alpha_i t}\cos(\beta_i t + \theta_i)$$

Re

Starts at ω=0.866l₀ and will slow down as nonlinearities limit amplitude

Consider the following 3-pole situation

Poles of
$$D(s) = s^n + I_0^n$$



So, to get a high ω_0 , want β as large as possible

Consider now the filter by adding a loss of α_1 to the integrator

Will now determine α_L and I_0 needed to get a desired pole Q and ω_0 by moving all poles so that right-most pole pair is dominant high-frequency pole pair of filter

The values of α and β are dependent upon I_0 but the angle θ is only dependent upon the number of integrators in the oscillator or VCO

$$\alpha + j\beta = I_0(\cos\theta + j\sin\theta)$$

Define the location of the filter pole to be

$$\alpha_F + j\beta_F$$

It follows that

$$\beta_F = \beta$$
 $\alpha_F = \alpha - \alpha_L$

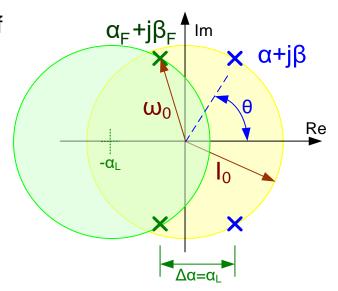
The relationship between the filter parameters is well known

$$\beta_{F} = \frac{\omega_{0}}{2Q} \sqrt{4Q^{2}-1} \qquad \alpha_{F} = -\frac{\omega_{0}}{2Q}$$

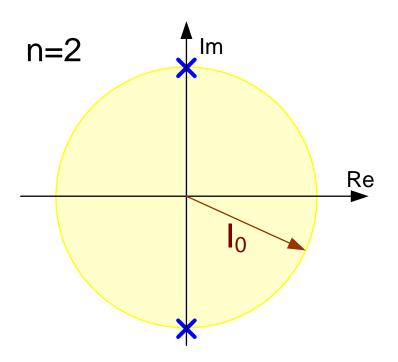
Thus for any n

$$I_0 = \frac{\omega_0}{(\sin\theta)2Q} \sqrt{4Q^2 - 1}$$

$$I_0 = \frac{\omega_0}{(\sin\theta)2Q} \sqrt{4Q^2 - 1}$$
 $\alpha_L = \frac{\omega_0}{2Q} + I_0 \cos\theta = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q(\tan\theta)} \sqrt{4Q^2 - 1}$



Will a two-stage structure give the highest frequency of operation?

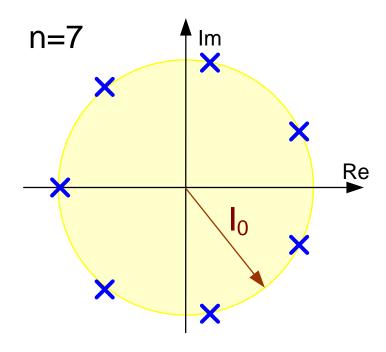


$$\omega_0 = \sqrt{(\alpha - \Delta \alpha)^2 + \beta^2}$$
 $\omega_0 = \sqrt{(-\Delta \alpha)^2 + \beta^2}$

- Even though the two-stage structure may not oscillate, can work as a filter!
- Need odd number of inversions in integrators
- Can add phase lead if necessary

Oscillator Background:

What will happen with a circuit that has two pole-pairs in the RHP?



General form of response for odd number of poles:

$$A_0 e^{\alpha_{_{\scriptscriptstyle 0}} t} + \textstyle\sum\limits_{i=1}^{n/2} \left|A_i\right| e^{\alpha_{_{\scriptscriptstyle i}} t} cos \big(\beta_i t + \theta_i\big)$$

The impulse response will have two decaying exponential terms and two growing exponential terms

What will happen with a circuit that has two pole-pairs in the RHP?



$$\alpha_1 = 0.2225$$
 $\beta_1 = 0.974$

$$\alpha_2$$
=0.9009 β_2 =0.4338

Consider the growing exponential terms and normalize to $I_0=1$

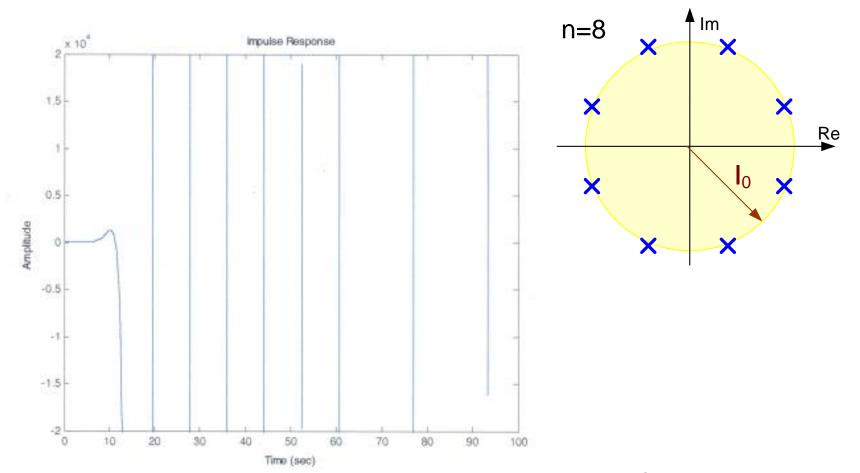
$$|A_1|e^{\alpha_1 t}\cos(\beta_1 t+\theta_1) + |A_2|e^{\alpha_2 t}\cos(\beta_2 t+\theta_2)$$

At t=145 (after only 10 periods of the lower frequency signal)

$$r = \frac{e^{\alpha_2 t}}{e^{\alpha_1 t}} \bigg|_{t=145} = \frac{e^{.9009 \cdot 145}}{e^{.2225 \cdot 145}} = 5.2x10^{42}$$

The lower frequency oscillation will completely dominate!

What will happen with a circuit that has two pole-pairs in the RHP?



Thanks to Chen for these plots

Figure 14 N=8 impulse response

Can only see the lower frequency component!

What will happen with a circuit that has two pole-pairs in the RHP?

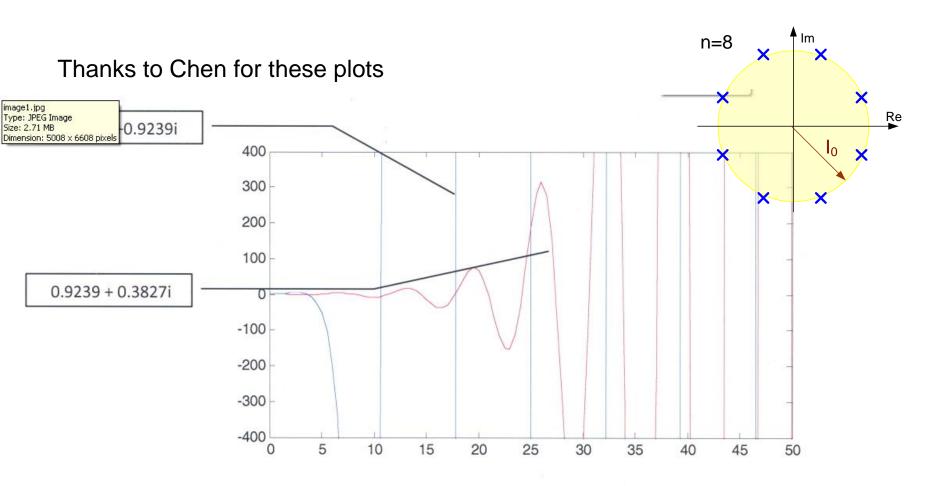
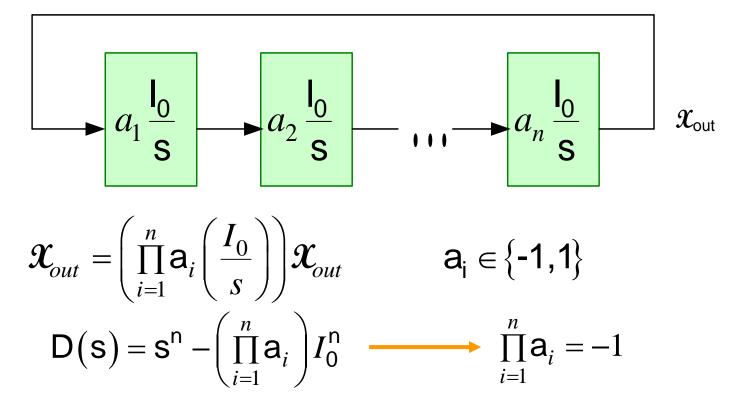


Figure 7 N=8 the impulse response of two poles

After even only two periods of the lower frequency waveform, it completely dominates!

How do we guarantee that we have a net coefficient of +1 in D(s)?

$$D(s) = s^n + I_0^n$$

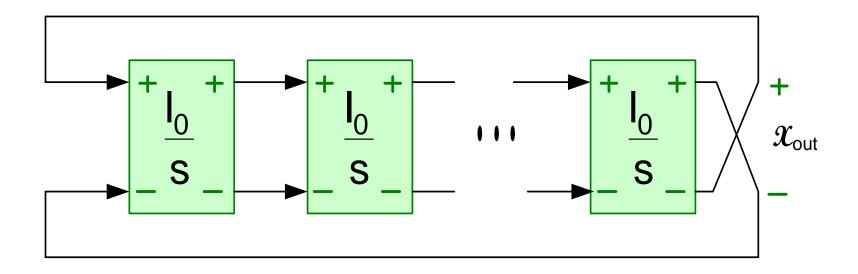


Must have an odd number of inversions in the loop!

If n is odd, all stages can be inverting and identical!

How do we guarantee that we have a net coefficient of +1 in D(s)?

$$D(s) = s^n + I_0^n$$



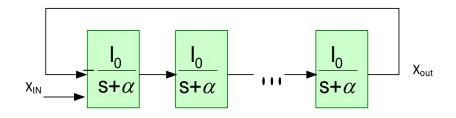
If fully differential or fully balanced, must have an odd number of crossings of outputs

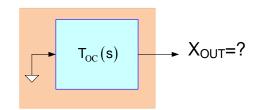
Applicable for both even and odd order loops

Inputs to Oscillator-Derived Filters:

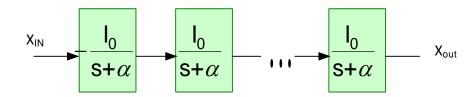
Most applicable to designing 2nd-order high frequency narrow band filters

- Add loss to delay stages
- Multiple Input Locations Often Possible
- Natural Input is Input to delay stage

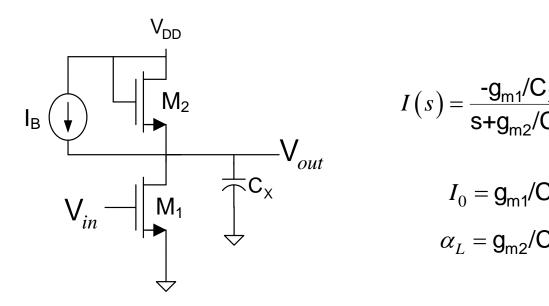




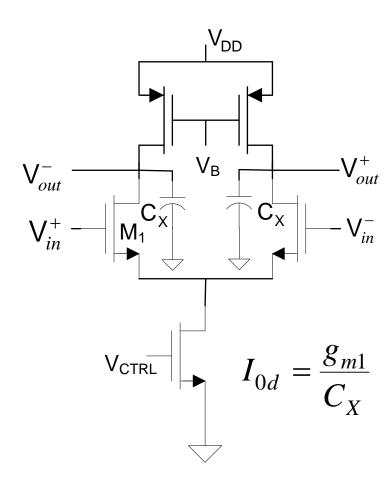
- Add loss to delay stages
- Often Just Salvage Stages (drop feedback loop)
- Natural input is input to delay stage



A lossy integrator stage

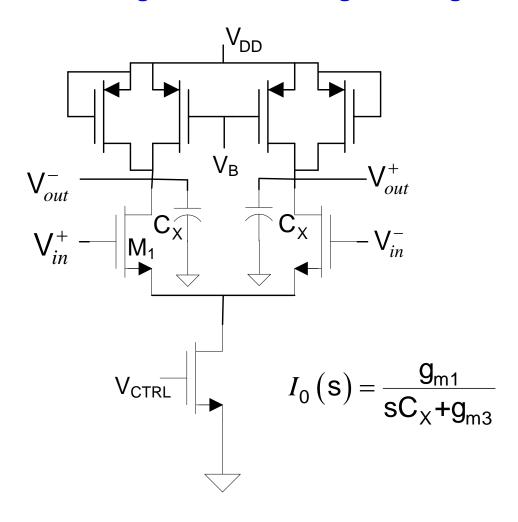


A fully-differential voltage-controlled integrator stage



Will need CMFB circuit

A fully-differential voltage-controlled integrator stage with loss



Will need CMFB circuit

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

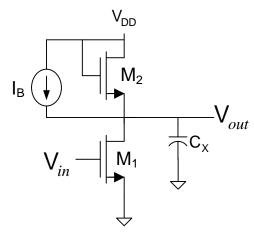
Recall:

$$I_0 = \frac{\omega_0}{(\sin\theta) 2Q} \sqrt{4Q^2 - 1}$$

$$\alpha_L = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q(\tan\theta)} \sqrt{4Q^2 - 1}$$
(2)

Substituting for I_0 and α_L we obtain:

$$\frac{g_{m1}}{C_{X}} = \frac{\omega_{0}}{(\sin\theta)2Q} \sqrt{4Q^{2}-1}$$
(3)
$$\frac{g_{m2}}{C_{X}} = \frac{\omega_{0}}{2Q} + \frac{\omega_{0}}{2Q(\tan\theta)} \sqrt{4Q^{2}-1}$$
(4)



$$I_0 = g_{m1}/C_X$$

$$\alpha_L = g_{m2}/C_x$$

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

Expressing g_{m1} and g_{m2} in terms of design parameters:

$$\frac{\mu C_{OX} W_1 V_{EB1}}{L_1 C_X} = \frac{\omega_0}{(\sin \theta) 2Q} \sqrt{4Q^2 - 1}$$

$$\frac{\mu C_{\text{OX}} W_2 V_{\text{EB2}}}{L_2 C_{\text{X}}} = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q \left(tan\theta \right)} \sqrt{4Q^2 - 1}$$

If we assume $I_B=0$, equating drain currents obtain:

$$V_{EB2} = V_{EB1} \sqrt{\frac{W_1 L_2}{W_2 L_1}}$$
 (7)

Thus the previous two expressions can be rewritten as:

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{1}}{L_{1}} \right] = \frac{\omega_{0}}{(\sin \theta) 2Q} \sqrt{4Q^{2}-1} \qquad (8)$$

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{1} W_{2}}{L_{1} L_{2}} \right] = \frac{\omega_{0}}{2Q} + \frac{\omega_{0}}{2Q(\tan \theta)} \sqrt{4Q^{2}-1} \qquad (9)$$

$$V_{in} = \begin{bmatrix} M_2 \\ M_1 \\ M_2 \end{bmatrix}$$

$$I_0 = g_{m1}/C_X$$

$$\alpha_L = g_{m2}/C_X$$

Using the single-stage lossy integrator, design the integrator to meet a given

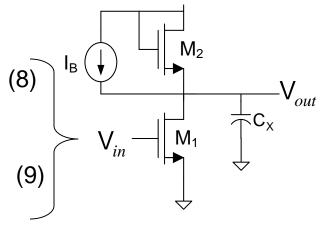
 ω_0 and Q requirement

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{_{1}}}{L_{_{1}}} \right] = \frac{\omega_{0}}{\left(\sin \theta \right) 2Q} \sqrt{4Q^{2}-1}$$

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_1 W_2}{L_1 L_2} \right] = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q (\tan \theta)} \sqrt{4Q^2 - 1}$$

Taking the ratio of these two equations we obtain:

$$\frac{W_2}{L_2} = \frac{\sin\theta + \cos\theta\sqrt{4Q^2 - 1}}{\sqrt{4Q^2 - 1}}$$
 (10)



$$I_0 = g_{m1}/C_X$$

$$\alpha_L = g_{m2}/C_X$$

Observe that the pole Q is determined by the dimensions of the lossy device!

Using the single-stage lossy integrator, design the integrator to meet a given

 ω_0 and Q requirement

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{1}}{L_{1}} \right] = \frac{\omega_{0}}{\left(\sin \theta \right) 2Q} \sqrt{4Q^{2}-1}$$

$$\frac{W_{2}}{L_{2}} = \frac{\sin \theta + \cos \theta \sqrt{4Q^{2}-1}}{\sqrt{4Q^{2}-1}}$$
(10)

Still must obtain W_1/L_1 , V_{EB1} , and C_X from either of these equations

Although it appears that there might be 3 degrees of freedom left and only one constraint (one of these equations), if these integrators are connected in a loop, the operating point (Q-point) will be the same for all stages and will be that value where $V_{out}=V_{in}$. So, this adds a second constraint.

Setting $V_{out}=V_{in}$, and assuming $V_{T1}=V_{T2}$, we obtain from KVL

$$V_{DD} = V_{EB1} + V_{EB2} + 2V_{T}$$
 (11)

But V_{EB1} and V_{EB2} are also related in (7)

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{1}}{L_{1}} \right] = \frac{\omega_{0}}{\left(\sin \theta \right) 2Q} \sqrt{4Q^{2}-1}$$

$$\frac{W_{2}}{L_{2}} = \frac{\sin \theta + \cos \theta \sqrt{4Q^{2}-1}}{\sqrt{4Q^{2}-1}}$$
(10)

Still must obtain W_1/L_1 , V_{EB1} , and C_X from either of these equations

$$V_{DD} = V_{EB1} + V_{EB2} + 2V_{T}$$

$$V_{EB1} = \frac{V_{DD} - 2V_{T}}{1 + \sqrt{\frac{W_{2}L_{1}}{W_{1}L_{2}}}}$$

$$(12)$$

Substituting (10) into (12) and then into (8) we obtain

$$\frac{\mu C_{OX}}{C_{X}} \left[\frac{W_{1}}{L_{1}} \right] \left(\frac{V_{DD} - 2V_{T}}{1 + \sqrt{\left(\frac{W_{1}}{L_{1}}\right)^{-1} \left(\frac{\sin\theta + \cos\theta\sqrt{4Q^{2} - 1}}{\sqrt{4Q^{2} - 1}}\right)}} \right) = \frac{\omega_{0}}{(\sin\theta)2Q} \sqrt{4Q^{2} - 1} \tag{13}$$

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

$$\frac{W_{2}}{L_{2}} = \frac{\sin\theta + \cos\theta\sqrt{4Q^{2}-1}}{\sqrt{4Q^{2}-1}}$$

$$\frac{\mu C_{OX}}{C_{X}} \left[\frac{W_{1}}{L_{1}}\right] \frac{V_{DD} - 2V_{T}}{1 + \sqrt{\left(\frac{W_{1}}{L_{1}}\right)^{-1} \left(\frac{\sin\theta + \cos\theta\sqrt{4Q^{2}-1}}{\sqrt{4Q^{2}-1}}\right)}} = \frac{\omega_{0}}{(\sin\theta)2Q} \sqrt{4Q^{2}-1}$$
(10)

There is still one degree of freedom remaining. Can either pick W_1/L_1 and solve for C_χ or pick C_χ and solve for W_1/L_1 .

Explicit expression for W₁/L₁ not available

Tradeoffs between C_X and W_1/L_1 will often be made

Since $V_{OUTQ} = V_T + V_{EB1}$, it may be preferred to pick V_{EB1} , then solve (12) for W_1/L_1 and then solve (13) for C_X

Adding I_B will provide one additional degree of freedom and will relax the relationship between V_{OUTQ} and W_1/L_1 since (7) will be modified

Stay Safe and Stay Healthy!

End of Lecture 33