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Lecture 33

Oscillators, VCOs, and
Osclillator/VCO-Derived Filters



Only two of these circuits are useful directly as bias generators!
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Transconductance Linearization Strategies




Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with
either a dc current or a dc voltage

o _% Vou
; T(s)= gmgr sC

/\C

N
Programmable First-Order Low-Pass Filter

cecccccccccccccommmpoccccccncccnncnn,




Question:

What is the relationship, if any, between a filter and
an oscillator or VCQO?

XlN_> T (S) _>SOUT

X
Oscillator ="' AAY

l.e. Can an oscillator be —_
viewed as a filter with no J’ Toc(s) —— Rout=:
input?




What is the relationship, Iif any, between a filter and
an oscillator or VCQO?

X —
Oscillator —_—— Vv J» Toc(s) —— Xout=*
ST

Will focus on modifying oscillator structures to form high frequency narrow-
band filters

Claim: Narrow band filters are dependent primarily on the poles close to
the imaginary axis and affected little by poles that are farther away

Goal: Obtain very high frequency filter structures



What is the relationship, Iif any, between a filter and
an oscillator or VCQO?

Oscillator

XOUT /\/\/
ILILILr

-

_,» Xout=

» When power is applied to an oscillator, it initially behaves as a small-
signal linear network

* When operating linearly, the oscillator has poles (but no zeros)

» Poles are ideally on the imaginary axis or appear as cc pairs in the RHP

* There is a wealth of literature on the design of oscillators

» Oscillators often are designed to operate at very high frequencies

» If cc poles of a filter are moved to RHP is will become an oscillator

 Can oscillators be modified to become filters?



Osclillator Background:

Consider a cascaded integrator loop comprised of

n integrators

This structure Is often used to build oscillators
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Consider the poles of D(s)=s"+ I

n n __
s+1,=0 Poles are the n roots of -1 scaled by I,
n n
S = _IO
Roots of -1:
1
S = [—IQ]”
n=2 Alm “Im
X n=3 X
1 1 , Re —% =
S:[—l] |:IO:|n 1 1 1 1
! . ’
s=lg [_1]”

Roots are uniformly spaced on a unit circle



Consider the poles of D(S) — g+ |8
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Some useful theorems

N(s
Theorem: A rational fraction T(S)= #With simple poles can be expressed
,Ul(s'pi)
. : . n A.
in partial fraction formas ~ T(s)=)} —-
izls-pi
where Ai:(s'pi)T(S)‘s:pi forl<js<n

Theorem: The impulse response of a rational fraction T(s) with simple poles can

be expressed as r(t):i AeP'  where the numbers A are the coefficients
i=1

in the partial fraction expansion of T(s)



Theorem: If p,is a simple complex pole of the rational fraction T(s), then the
partial fraction expansion terms in the impulse response corresponding to p; and p;*

*

can be expressed as A A
+ x
S-pi S-p;

Theorem: If p,= a+jB3; is a simple pole with non-zero imaginary part of the rational
fraction T(s), then the impulse response terms corresponding to the poles p,and p;*
in the partial fraction expansion can be expressed as

A|e%cos(Bt+6,)

where 6, is the angle of the complex quantity A,

Observe r(t) term corresponding to any complex pole pair is real !



Theorem: If all poles of an n-th order rational fraction T(s) are simple and have a
non-zero Imaginary part, then the impulse response can be expressed as

%2 A|e*cos(Bt+8;)
1

where 6, ,A; a;, and B; are as defined before

Theorem: If an odd-order rational fraction has one pole on the negative real axis
at a, and n simple poles that have a non-zero Imaginary part, then the impulse
response can be expressed as

A% 13 |A et t+0
o€ "+ 21‘ |e%'cos(Bit+6;)
1=

where 6, ,A; a;, and B; are as defined before

Observe r(t) is real for both even and odd n !



Consider the following 3-pole situation
Poles of D(S) —s"+ |8

A 8=60°
n=3 Im a=1,cos(60°)
0.5 -0.866025404 X B=I1,sin(60°)
0.5 0.866025404
-1 3.67545E-16
x e
for cc pole pair:
lo
a=0.5 I,
3=0.866 I, X
Oscillatory output at startup with any small |aat 1+0
impulse input: ‘A"e COS(B't e')

Starts at w=0.8661,and will slow down as nonlinearities limit amplitude



Consider the following 3-pole situation
Poles of D(S) — g+ |8
Consider moving all poles to left by Aa A n=3
B=0.866 I,

X
X % =

Wy =\/(a—Aa)2+[32 ~ 5™

So, to get a high w,, want 3 as large as possible



Consider now the filter by adding a loss of a; to the integrator

Will now determine a, and |, needed to get a desired pole Q and w, by moving alll
poles so that right-most pole pair is dominant high-frequency pole pair of filter

The values of a and 3 are dependent upon |, but

the angle 6 is only dependent upon the number of
integrators in the oscillator or VCO

a+jB =1,(cosB+ singd)
Define the location of the filter pole to be
0 +jBe
It follows that

PBe =B O =0-a

The relationship between the filter parameters
is well known

_ Wy 2 - _ -0
=0 /40Q2-1 Q.=
BF > Q F 20
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Will a two-stage structure give the highest frequency of operation?

A
— |
n=2 xm
Re
>
lo
X

Wy =\/(a—Aa)2+[32 Wy :\/(_Aa)zJFBZ

« Even though the two-stage structure may not oscillate, can work as a filter!
 Need odd number of inversions in integrators
« Can add phase lead if necessary



Oscillator Background:

What will happen with a circuit that has two pole-pairs in the RHP?

n=7 Aim
X
X
X
3¢ e
|
° X
X
X

General form of response for odd number of poles:

A.e® + nf\A 'e%cos(Bit+8;)
0 i i i
=1

The impulse response will have two decaying exponential terms and two
growing exponential terms



What will happen with a circuit that has two pole-pairs in the RHP?

n=7 A -0.62349 -0.781831482
X 0.222521 -0.974927912

X 0.900969 -0.433883739
0.900969 0.433883739

X 0.222521 0.974927912
-0.62349 0.781831482

3¢ Re 1 3.67545E-16

a,=0.2225 $,=0.974

a,=0.9009  PB,=0.4338

Consider the growing exponential terms and normalize to 1,=1

A le*'cos(B,t+0,) + |A,|e%'cos(B,t+6,)

At t=145 (after only 10 periods of the lower frequency signal)

o0t o-9009+145
at ~ 2225145
€ s €

The lower frequency oscillation will completely dominate !

r= — 5.2x10%




What will happen with a circuit that has two pole-pairs in the RHP?

mpuise Rasponssa n - 8 x x

X X

X
X

Thanks to Chen for these plots

Figure 14 N=8 impulse response

Can only see the lower frequency component !



What will happen with a circuit that has two pole-pairs in the RHP?

Thanks to Chen for these plots
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Figure7 N=8 the impulse response of two poles

After even only two periods of the lower frequency waveform, it

completely dominates !



How do we guarantee that we have a net coefficient of +1 in D(s)?

D(s)=s"+1;

D(s):s“—(l‘[ai)lg [Ta; =-1

=1

Must have an odd number of inversions in the loop !

If n is odd, all stages can be inverting and identical !



How do we guarantee that we have a net coefficient of +1 in D(s)?

D(s)=s"+1;

If fully differential or fully balanced, must have an odd number of
crossings of outputs

Applicable for both even and odd order loops



Inputs to Oscillator-Derived Filters:

Most applicable to designing 2"d-order high frequency narrow band filters

 Add loss to delay stages

« Multiple Input Locations Often Possible
« Natural Input is Input to delay stage

lo lo

L
XiN Sto S+«

« Add loss to delay stages

« Often Just Salvage Stages (drop feedback loop)
« Natural input is input to delay stage

Xin Io IO
Sta Sta

Sta

Sta

out

=

- » Xout=

?



A lossy integrator stage

VDD
«{ M. | (S) — 'gmllcx
> S-I_ng/CX
_L Vout
Vi, ﬂ{ M, ICX lo = Ima/Cx
1 a, = 0mo/Cx



A fully-differential voltage-controlled integrator stage

|VDD
|
_ +
Vout Ve Vout
co T i
VI—; % Ml X X Vin
N N

VCTR?‘ IOd o —g ml

Will need CMFB circuit



A fully-differential voltage-controlled integrator stage with loss

|VDD
T T
V
Vout ’ Vou
C;< ;<C B
VI—; % M¢ X X %Vin
N N

Will need CMFB circuit



Example:

Using the single-stage lossy integrator, design the integrator to meet a given
w, and Q requirement

VDD
Recall: y
|O: | Wy 4Q2_1 (1) . ﬁl\ﬂz
(sinB)2Q V
> B J‘CX out
L S FrecP R ) Vin%l\"l l
- 2Q 2Q(tane) _
Substituting for 1, and o, we obtain: Iy =9,/C«
= Om2/C
gm1: (UO 4Q2_1 (3? . =0Om2
Cy (sin)2Q
>

Om2 _ Wo / 1 ¢ 4)

Cy 2Q 2Q tane



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

w, and Q requirement
Expressing g,,; and g,,, in terms of design parameters:

HCoxWiVeg: . Wy 4Q2- (5?
L,Cy (sinB)2Q
HCox W, Vs, _ Wy Wo 102
= + 40°-1 (6
L,Cy 2Q 2Q(tan®) 2 ©

If we assume 15=0, equating drain currents obtain:

/W L,
Veg2=VeR1 W,L, (7)

Thus the previous two expressions can be rewritten as :

HCox VEr1 [Wl } W 40°-
C, L1 (sing)2Q
HCoxVepi | W\W, | _ Wy, Wy 4Q2-
Cy L,L, | 2Q 2Q(tan®)

DD

8) )

9)

_




Example:

Using the single-stage lossy integrator, design the integrator to meet a given
w, and Q requirement Voo

M;
HCox Vep: [Wl}: Wo 40%-1 8) )" @ *[ y
Cy L, (sine)2Q . Vo
> V. D/Il l "
HCoxVes1| WIW, _Wo / 21 (9) "
Cy L,L, 2Q 2Q( tane i
_
Taking the ratio of these two equations we obtain: 0 = 9mr/C
=0,,/C
W,  sin@+cos8/4Q*-1 (10) %= Im2
L, 4Q2-

Observe that the pole Q is determined by the dimensions of the lossy device !



Example:

Using the single-stage lossy integrator, design the integrator to meet a glven
w, and Q requirement

g 5;1/'2
N J_ Vout
IUCOXVEBl|:\|/_V1i|: . Wo 4Q2_1 (8) v. 1w, ch
Cy + 1 (sin®)2Q _ "
W, _ sinB +cosBy4Q°-1 (10)
L, 4Q%-1 —

Still must obtain W,/ L;, Vgg,, and C, from either of these equations

Although it appears that there might be 3 degrees of freedom left and only
one constraint (one of these equations), if these integrators are connected in a

loop, the operating point (Q-point) will be the same for all stages and will be that value
where V_,=V,,. So, this adds a second constraint.

Setting V,,~=V,, , and assuming V;,=V;,, we obtain from KVL

Vob=Ves1tVes2t2Vy (11)

But Vg, and Vg, are also related in (7)



Example:

Using the single-stage lossy integrator, design the integrator to meet a glven

w, and Q requirement
M:
ls .
HCoxVemi[W,]_ Wy 102 ) £ Y
L, _( 4Q°-

- 1 8 T out
Cy sinB)2Q © v, —{w ch
| ; ~ ]
W, sinB+ cosBy4Q“-1 v
= (10)
L, 4Q%-1 y

Still must obtain W,/ L, Vgg,, and C, from either of these equations

Voo =Veg1t Ve, +2V7 (11) Veg, = Vop-2Vy (12)
_y WL, 1+ fW L,
Vego=Ves: W L, (7) WL,

Substituting (10) into (12) and then into (8) we obtain

HCox [Wl] Vop —2Vr - Wo 4Q°%-1 (13)

1+\/(W1]_1(sin9+cose 4Q2_1j (sin®)2Q

V4Q2-1



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

w, and Q requirement

W,  sinB+cosB4Q-1
L, 4Q%-
HCox [ Voo —2Vy
= 1+ (lel sin@+cosB+/4Q?*-1 (sme )2Q
L, 4Q%-1

Nz

(10)

(13)

.

_

Jzi
<

VD D
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Vi
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><O

There is still one degree of freedom remaining. Can either pick W,/L, and solve for Cy
or pick Cy and solve for W,/L;,.

Explicit expression for W,/L, not available

Tradeoffs between C, and W,/L, will often be made

Since Voyro=V1+Vggs, it may be preferred to pick Vgg,, then solve (12) for W,/L; and
then solve (13) for Cy

Adding Ig will provide one additional degree of freedom and will relax the relationship
between Vqoyrq and W,/L, since (7) will be modified
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Stay Safe and Stay Healthy !







